Multivariate models of equity returns for investment guarantees valuation

Mathieu Boudreault, M.Sc., F.S.A.

HEC Montréal

November 14th, 2008
This is mainly based upon the paper:

- "Multivariate models of equity returns for investment guarantees valuation"
- Written with Christian-Marc Panneton
- Accepted for publication in the *North American Actuarial Journal*
- Available upon request to the authors before it is published.

Earlier version of the paper has been presented at the Stochastic Modeling Symposium and Investment Seminar in Toronto in 2006.
About the authors

- **Mathieu Boudreault, M.Sc., F.S.A.**
 - Ph.D. Candidate, Dept. of Management Sciences, HEC Montréal, Montréal
 - Assistant Professor (December 1st, 2008), Dept. of Mathematics, UQAM, Montréal
 - E-mail: mathieu.boudreault@hec.ca

 - Financial risk manager, Industrial Alliance, Québec City
 - E-mail: christian-marc.panneton@inalco.com
Insurance market has seen the rise of products linked to the equity market through investment guarantees:

- Segregated funds / variable annuities;
- Equity-indexed annuities (EIA);

Due to the nature of the contract (put option combined with mortality), it is necessary to appropriately model the product and the underlying assets to compute sufficient provisions.

- Dynamic hedging may be difficult in certain cases;
- CTE provisions have become the standard;
CIA’s Task Force on Segregated Fund Investments in 2002:
- Recommended the use of stochastic equity returns models;
- No specific model has been mandated;
- Has to be at least as conservative as the CIA’s calibration points;

American Academy of Actuaries’ RBC C3 Phase II report
- Also recommended the use of stochastic equity returns models;
- Presented the stochastic log-volatility model;
We will take a look at:

- Concept of stochastic equity returns model
- Desired features
- Models proposed
- Valuation of investment guarantees
- Univariate vs multivariate
Stochastic equity returns model

- Model for the time-varying dynamics of the equity return
 - Random over time: stochastic process
 - Continuous-time vs discrete-time
 - Simple compounding vs continuous compounding

- Continuous compounding
 - Let S_t be the price of a stock or the value of an equity index at time t
 - Then, the (continuously compounded) periodic return is

$$y_t = \log \left(\frac{S_t}{S_{t-1}} \right)$$

or

$$S_t = S_{t-1} \exp (y_t).$$
Known models

- Black-Scholes
 - Continuous-time model;
 - S_t follows a geometric Brownian motion or y_t follows an arithmetic Brownian motion;

- Independent log-normal (ILN)
 - Discrete-time equivalent of the geometric Brownian motion i.e.
 \[y_t = \mu + \varepsilon_t \]
 where $\varepsilon_t \sim N(0, \sigma)$.

- Both are equivalent to saying returns follow a random walk
 - Cannot predict future value of the stock with historical data;
 - Fails in practice because of time-varying volatility: predictability in the squares of the returns;
Illustration of volatility

 - Daily returns, 60 trading days before, annualized
Models of heteroskedasticity

- Most famous are: ARCH of Engle (1982), GARCH (1,1) of Bollerslev (1986)
- More recent:
 - Regime-switching (RS) model (more details later): Hamilton (1989), Hardy (2001)
 - Combination of GARCH(1,1) and a regime-switching framework in Gray (1996)
 - Regime-switching model with a drawdown measure in Panneton (2002)
 - Stochastic volatility model (SV)
 - American Academy of Actuaries
 - Most important academic authors: Harvey, Ruiz, Shephard, Jacquier, etc.
 - Difficult to estimate: will not be further considered
- Idea: σ_t^2 is given by a model that is a function of past observations
Models of heteroskedasticity

- The main difference between classes of models is the dynamics of σ_t^2.
- In a ARCH/GARCH model, σ_t^2 is a deterministic function of past errors and volatilities
 - Fully predictable given past observations y_{t-1}, y_{t-2}, \ldots
- In a RS and SV model, σ_t^2 is a stochastic function of past errors and volatilities
 - Volatility is a stochastic process
 - Given past observations y_{t-1}, y_{t-2}, \ldots, the volatility is a random variable.
- Look at GARCH and RSLN models in more details.
In a GARCH model, we focus on the dynamics of σ_t^2.

Represented as

$$\sigma_t^2 = \alpha_0 + \alpha_1 \varepsilon_{t-1}^2 + \beta_1 \sigma_{t-1}^2$$

in a GARCH (1,1) model, where $\varepsilon_t = y_t - \mu$.

Suppose you know σ_0 and y_0. Then,

$$\varepsilon_0 = y_0 - \mu$$
$$\sigma_1^2 = \alpha_0 + \alpha_1 \varepsilon_0^2 + \beta_1 \sigma_0^2$$

and the rest of the computations are similar.

Consequently, $\sigma_t^2 \mid y_{t-1}, \ldots, y_0$ is deterministic.
Regime-switching models

- A regime-switching model is characterized by the addition of an unobserved process ρ_t that takes K different values, i.e. $\rho_t \in \{1, 2, ..., K\}$.
- In terms of stochastic processes, $\{\rho_t, t = 0, 1, 2, ...\}$ is a Markov chain.
- Dynamics of returns depend on the current state of ρ_t.
- In the RSLN model of Hardy (2001), the returns follow a different ILN model in each state:

$$ (y_t | \rho_t = k) \sim N(\mu_k, \sigma_k) $$

- It remains to determine the values of μ and σ in the different regimes $(\mu_1, \mu_2, ..., \mu_K, \sigma_1, ..., \sigma_K)$ and the transition probabilities.
- With the dataset presented, RSLN models have both a better overall fit and better fit in the tails.
Value-at-Risk (VaR) is probably the most famous valuation metric.
VaR has some issues: CTE is better and recommended.
Mathematically,

\[CTE_\alpha [X] = E[X | X > VaR_\alpha [X]]. \]

Intuitively, it is the mean loss given that losses are in the greatest 100 \((1 - \alpha)\)% of the sample.

Simple closed-form solution for RSLN models

In the context of the dataset used in Hardy (2001), it has been shown that:

- CTEs computed with regime-switching models are higher than with GARCH(1,1).
Introduction

- Previous models focused on the dynamics of one asset (univariate models);
- Segregated funds / variable annuities products are sold on portfolios of assets;
- Diversification and correlation (dependence) effects have to be appropriately represented;
- Purpose of what follows: present models of equity returns for multiple assets (multivariate models)
 - Understand dynamics of equity markets;
 - Valuation of investment guarantees (CTE);
Outline

1 Multivariate models
 - Important characteristics;
 - How do we build them;
 - Copulas (very briefly);
 - Multivariate extensions of known models;

2 Estimation
 - Maximum likelihood;

3 Valuation of investment guarantees
 - Closed-form solutions;
 - Simulation;

4 Numerical example
 - Dataset;
 - Comparison;
 - Validation;
 - Valuation of investment guarantees;
Characteristics

- What is the difference between modeling a single asset and a portfolio of assets?
 - **Important**: dependence relationship between equity returns
 - Strength of the relationship
 - How does it behave over time?
 - Each asset should have time-varying volatility as well;
 - All important issues that need to be addressed in a multivariate setting;
Characteristics

- Time-varying dependence relationship
 - Less obvious but intuitive
 - Increased dependence in times of crises
 - Multiple examples
 - Most obvious is the world we observe right now

- Time-varying volatility
 - Stochastic (Regime-switching, SV)
 - Predictable (GARCH processes)
 - Same idea in a multivariate framework
Time-varying correlation

- Following graph measures rolling correlation between S&P500 and S&P TSX from 2000 until Oct. 31st, 2008;
- Daily returns, 60 trading days before, annualized
Time-varying correlation

- Clearly, there is variation in the correlation over time;
 - Currently stronger than it were in 2005 before the onset of the subprime crisis.
- Will have an important impact on diversification.
 - Much more difficult to diversify during crises
- Backed by literature in financial empirical research: Tse (2000)
 - The author presents a test of time-varying correlation;
 - Shows statistically significant time-varying correlation in Asian equity markets;
 - Constant correlation in Asian futures and exchange rates markets.
Important features:
- Time-varying volatility and correlation
- Tractability
- Ease of application

Models considered:
- Multivariate regime-switching;
- Multivariate GARCH models;
- Copulas (very briefly)
Modeling dependence

2 approaches

1. Directly through the distribution of ϵ_t
 - Joins markets through the multivariate distribution in itself
 - Multivariate normal distribution is common

2. Copulas
 - Joins markets through a function of each univariate c.d.f.
 - More difficult to account for time-varying dependence
 - Will briefly discuss this approach
Some notation

- Assume for the moment that we apply the first approach to dependence.

- Let

\[\mathbf{y}_t \equiv \left[y_{t}^{(1)}, \ldots, y_{t}^{(N)} \right] \]

represent the set of returns for each of the \(N \) assets of a portfolio.

- Dynamics of returns in general

\[\mathbf{y}_t = f(\mathbf{y}_{t-1}, \mathbf{y}_{t-2}, \ldots) + \mathbf{\varepsilon}_t \]

where \(f \) is some function of previous returns and \(\mathbf{\varepsilon}_t \) is a vector of errors, which obeys some multivariate distribution.

- For simplicity, we assume \(f \) is some constant \(\mu \) which is the mean return.
How do we account for time-varying volatility and correlation?

Let

$$H_t \equiv \text{Var} \left[\varepsilon_t \mid y_{t-1}, y_{t-2}, \ldots \right].$$

Multivariate GARCH models

- H_t is predictable

Regime-switching models (and SVOL models)

- H_t is random
- Once we know y_{t-1}, y_{t-2}, \ldots, the time t covariance matrix is still random
- There is an unobservable process that affects the volatilities and correlations
Copulas

- 2nd approach for dependence modeling;
- What is a copula?

 - Approach that creates dependence between random variables using some function C of the marginal c.d.f.
 - Assume for example the returns of each market $y_t^{(i)}$ follows an ILN model. Then, the c.d.f. of $y_t^{(i)}$ is $\Phi^{(i)}(.)$.
 - A copula would create a vector of r.v. with a joint c.d.f. $C \left(\Phi^{(1)}(.), ..., \Phi^{(N)}(.) \right)$.
 - C is the copula and defines the dependence relationship between the random variables.
Copulas - Features

- Large literature on copulas allow the modeler to find a copula tailored to the type of dependence observed;
- Not more complicated to estimate the model or to simulate from;
- However, in the context of portfolios of more than 2 assets, choice of copulas is limited.
 - Gaussian or Student copulas (Elliptical copulas)
- Difficult to account for time-varying dependence
 - Not straightforward with a copula;
 - Possible and subject of future research;
- For the rest of the presentation:
 - Focus on first approach to dependence;
 - Focus on multivariate regime-switching and GARCH models;
Characteristics

- Very similar to the approach taken in the RSLN model;
- Extension to multivariate framework;
- 2 approaches:
 - Global regime;
 - Local regimes;
Global regime

- Unobserved process influences all markets at the same time;
- Markov process randomly moves from regime 1 (low vol.) to 2 (high vol.) over time;
- Once it is at regime 2 (1), all markets have higher (lower) volatilities for the same amount of time;
- Correlation also depends on the regime.
- Intuitively, higher (lower) correlation in the high (low) volatility regime.
- Realistic for crises but may ignore market specificities
- Parsimonious
Local regimes

- Basically add regimes to the global regime approach so that some markets may have different local dynamics;
 - Japan market may be in high vol. regime while U.S. market is in low vol. regime;
 - Some local events may have a short-term effect on returns that do not influence other markets;
- More realistic;
- Many more parameters to estimate;
- Comparison of both approaches later;
Global regime - Model

- Let ρ_t denote the status of the unobserved global regime process (not to be confused with correlation).
- Then,
 $$y_t = \mu_{\rho_t} + \varepsilon_t$$

 where
 $$\varepsilon_t | \rho_t \sim \text{MVN} \left(0, \Sigma_{\rho_t} \right).$$

- There are K different regimes, that is $\rho_t \in \{1, 2, ..., K\}$. $K = 2$ or 3 is sufficient most of the time, even in a multivariate setting.
- This is the simplest formulation of the MRSLN model.
Global regime - Example

- Suppose there are two regimes: low (1) and high (2) volatility.
- Then, we have 2 states with probabilities of transition given by p_{12} and p_{21} (and their reciprocal).
- Assume at time t, we are in a high (2) volatility regime, i.e. $\rho_t = 2$. Then for this specific time period,
 \[(\mathbf{y}_t | \rho_t = 2) \sim \text{MVN} (\mu_2, \Sigma_2). \]
- We require to estimate μ_2 and Σ_2 which are a vector and matrix respectively.
- Similarly, if at time $t + 1$, we move back to the low volatility regime, then
 \[(\mathbf{y}_{t+1} | \rho_{t+1} = 1) \sim \text{MVN} (\mu_1, \Sigma_1) \]
 with μ_1 and Σ_1 estimated.
Local regimes - Illustration

- Suppose for the illustration that there are 2 assets (Canada, U.S.) and each have 2 regimes (low, high vol.)

- Then, it is equivalent to a global regime model with 4 regimes:
 - Canada low vol. - U.S. low vol: 11
 - Canada low vol. - U.S. high vol: 12
 - Canada high vol. - U.S. low vol: 21
 - Canada high vol. - U.S. high vol: 22

- We have 4 states with 12 different probabilities of transition.
- Volatilities, correlations and mean returns are also necessary for each of the 4 regimes.
- Very important number of parameters, even for 2 assets only.
- More parsimonious to add a third regime for a market that is suspected to have important local dynamics.
Introduction

- We have previously reviewed the univariate GARCH model.
- Idea is similar in a multivariate setting:
 - Current covariance matrix is a function of past errors and covariances.
- Univariate models may also show useful for some classes of multivariate models.
- 4 models mainly:
 - Vech;
 - BEKK;
 - DCC;
 - CCORR;
Issues

- Parsimony is important for both classes of models but especially GARCH models;
- Positive (semi-) definiteness of covariance matrix
 - Suppose we have a portfolio defined by the weights w.
 - Then, it is essential that

$$\text{Var} \left[w^\top y_t \right] = \text{Var} \left[\sum_{i=1}^{N} w^{(i)} y^{(i)}_t \right]$$

$$= \sum_{i=1}^{N} \sum_{j=1}^{N} w^{(i)} w^{(j)} H_{t}^{(i,j)}$$

$$\geq 0.$$

- A matrix will not be PSD if $\text{Var} \left[w^\top y_t \right] < 0$.
- More important with GARCH models.
VECH model

- Presented by Bollerslev, Engle and Wooldridge (1988) as an approach to model the time-varying market premium in the CAPM;
- Focus on the simplest representation: diagonal VECH;
- Essentially a GARCH(1,1) on each element of H_t;
 - This formulation does not guarantee PSD;
 - Has to use other simple formulation;
- Important feature: volatility of one market is NOT a function of the volatility of other markets;
VECH model

- Reformulate instead as

\[
H_t = \left(CC^T \right) + \left(AA^T \right) \otimes \left(\varepsilon_{t-1} \varepsilon_{t-1}^T \right) + \left(BB^T \right) \otimes H_{t-1}
\]

with \(\otimes \) being the element-by-element multiplication.

- This guarantees PSD.

- **Simplifications**: \(A, B \) and \(C \) can be vectors or scalars.
BEKK model

- Formulation that guarantees PSD.
- Features:
 - Volatility of one market is a function of the volatility of other markets.
 - A lot more parameters to estimate.
- BEKK model is

\[
H_t = C^T C + A \left(\varepsilon_{t-1} \varepsilon_{t-1}^T \right) A^T + BH_{t-1}B^T
\]

where \(A, B \) and \(C \) are full matrices of coefficients to estimate.

- **Simplifications**: \(A, B \) and \(C \) can be vectors or scalars.
DCC model

- Introduced by Engle (2002): Dynamic Conditional Correlation
- **Idea**: correlation of returns is equivalent to covariance of **standardized** returns (with variance 1)
- Model is built in 2 steps:
 - Volatility dynamics;
 - Correlation dynamics;
- We can always write the dynamics of the covariance matrix as
 \[H_t = D_t R_t D_t. \]
DCC model

- Estimated in two steps also:
 - Volatility dynamics for each market;
 - Given the residuals for each market, the dynamics of correlation are estimated;
- Engle presents correlation processes that use 1 or 2 parameters;
- Very parsimonious;
Constant correlation model (CCORR)

- Introduced by Bollerslev (1990);
- Special (important) case of the DCC model:

\[H_t = D_t R D_t \]

where \(R \) is the constant correlation matrix.

- Can also be estimated in two steps:
 - Volatility dynamics
 - Correlation dynamics
Maximum likelihood estimation

- Usual approach;
- Find parameters that maximize probability of observing the sample;
- Multivariate regime-switching models
- Multivariate GARCH models
 - VECH and BEKK models
 - DCC and CCORR models
Multivariate regime-switching models

- As simple as in a univariate framework.
 - Instead we use the multivariate p.d.f. of $\mathbf{y}_t \mid \mathbf{y}_{t-1}, \ldots, \mathbf{y}_0$
- Can be done in Excel in combination with the Solver.
Multivariate GARCH models

- We can estimate all parameters at once or use a two-step approach.

 All parameters at once (All models):

 - $y_t | y_{t-1}, ..., y_0$ is a N-variate normal distribution with mean μ and covariance H_t.

 - Maximize likelihood function using the p.d.f. of a N-variate normal variable.

 Two-step estimation (DCC and CCORR only):

 - Perform N univariate estimations of the volatility dynamics, one for each market.

 - Compute the resulting standardized residuals.

 - Find the 1 or 2 parameters that define the correlation dynamics in the DCC model.
We define the portfolio weights \mathbf{w}.

The portfolio return is

$$y_t^{(P)} = \mathbf{w}^\top \mathbf{y}_t$$

$$= \sum_{i=1}^{N} w^{(i)} y^{(i)}_t.$$

We are looking for the amount of money that would cover the mean losses over the Value-at-Risk.
Given that we know the regime or the number of visits to each regime, then

\[y_t^{(P)} \mid \rho_t \]

has a normal distribution.

Use Hardy (2001, 2003) results with respect to the CTE with one asset with the modification that

\[
\begin{align*}
\mu^* (k) &= kw'\mu_1 + (n - k) w'\mu_2 \\
\sigma^* (k) &= \sqrt{kw'\Sigma_1 w + (n - k) w'\Sigma_2 w}.
\end{align*}
\]
No closed-form solution since

\[y_{t+n}^{(P)} \mid y_t, y_{t-1}, \ldots, n > 1 \]

is not normal anymore.

Solutions:

- Approximation;
- Naive simulation;
- Simulation with control variate;
Approximation: assume that

$$\text{Var} \left[y_{t+n}^{(P)} \right] \equiv \mathbf{w}^\top E \left[H_{t+n} | y_t, y_{t-1}, \ldots \right] \mathbf{w}, \quad n > 1$$

- CTE results from a lognormal distribution with independent but not identically distributed returns: closed-form solution exists.
- $E \left[H_{t+n} | y_t, y_{t-1}, \ldots \right], \quad n > 1$ is simple to derive

Naive simulation:
- Simulate multiple scenarios of returns for all assets over the time period considered;
- Compute the loss for each scenario;
- Compute a realization of the CTE as the mean of the 5% largest losses;
- Repeat if necessary;

Simulation with control variate
- Use the previous approximated CTE value to reduce the number of necessary scenarios or to increase precision in the CTE value.
Introduction

• Heart of the analysis;

• Outline:
 • Dataset;
 • Global vs local regimes;
 • Model selection;
 • Model validation;
 • CTE;
Dataset

- 4 markets: Canada, U.S., United Kingdom, Japan
- Indices:
 - Canada: S&P TSX total return index
 - U.S.: S&P 500 total return index
 - Japan: monthly historical return of TOPIX
Global vs local regimes

- 2 pairs of markets:
 - Canada and U.S.;
 - U.S. and Japan;

- Intuitively, global regime should work better than local regimes for highly correlated markets.

Local regimes:

- Dependent: each probability of transition $p_{11,12}$ is estimated
- Independent:
 - Simplification of the dependent approach;
 - Probability of transition $p_{11,12}$ is the product of marginal transition probabilities;

- Compare fit on the basis of penalized-likelihood criteria
 - The more parameters a model have, the better the fit should be
Global vs local regimes

- # is the number of parameters, AIC and SBC are the Akaike and Schwartz-Bayes Criteria
- Global regime does well in both cases

<table>
<thead>
<tr>
<th>Model</th>
<th>#</th>
<th>AIC</th>
<th>SBC</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S. and Canada</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Global</td>
<td>12</td>
<td>2370.90</td>
<td>2344.56</td>
</tr>
<tr>
<td>Indep. local</td>
<td>16</td>
<td>2355.46</td>
<td>2320.34</td>
</tr>
<tr>
<td>Dep. local</td>
<td>28</td>
<td>2356.46</td>
<td>2295.00</td>
</tr>
<tr>
<td>U.S. and Japan</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Global</td>
<td>12</td>
<td>2040.01</td>
<td>2013.67</td>
</tr>
<tr>
<td>Indep. local</td>
<td>16</td>
<td>2043.55</td>
<td>2008.43</td>
</tr>
<tr>
<td>Dep. local</td>
<td>28</td>
<td>2033.64</td>
<td>1972.18</td>
</tr>
</tbody>
</table>
Model selection

- Choose most parsimonious models among a set of regime-switching and GARCH models.
 - More parameters should mean better fit. How much better is the fit?
- Penalized-likelihood criteria
 - LRT is the likelihood ratio test. Checks statistically the significance of the added parameters in nested models.

Regime-switching models

<table>
<thead>
<tr>
<th>Model</th>
<th>#</th>
<th>AIC</th>
<th>SBC</th>
<th>LRT</th>
</tr>
</thead>
<tbody>
<tr>
<td>MRSLN(2,1)</td>
<td>24</td>
<td>4399,72</td>
<td>4347,04</td>
<td>n/a</td>
</tr>
<tr>
<td>MRSLN(2,2)</td>
<td>30</td>
<td>4396,64</td>
<td>4330,79</td>
<td>0,4414</td>
</tr>
<tr>
<td>MRSLN(3,1)</td>
<td>36</td>
<td>4421,81</td>
<td>4342,79</td>
<td>< 10^{-7}</td>
</tr>
<tr>
<td>MRSLN(3,3)</td>
<td>48</td>
<td>4415,14</td>
<td>4309,77</td>
<td>< 10^{-7}</td>
</tr>
</tbody>
</table>

- Most parsimonious models are MRSLN(2,1) and MRSLN(3,1).
 - One correlation matrix
 - 2 or 3 regimes
Model selection

- **GARCH models**

<table>
<thead>
<tr>
<th>Model</th>
<th>#</th>
<th>AIC</th>
<th>SBC</th>
</tr>
</thead>
<tbody>
<tr>
<td>VECH</td>
<td>34</td>
<td>4389.36</td>
<td>4314.73</td>
</tr>
<tr>
<td>Vector VECH</td>
<td>22</td>
<td>4402.74</td>
<td>4354.45</td>
</tr>
<tr>
<td>Scalar VECH</td>
<td>16</td>
<td>4399.59</td>
<td>4364.47</td>
</tr>
<tr>
<td>CCORR</td>
<td>22</td>
<td>4402.38</td>
<td>4354.08</td>
</tr>
<tr>
<td>DCC-INT</td>
<td>23</td>
<td>4410.46</td>
<td>4359.98</td>
</tr>
<tr>
<td>DCC-MR</td>
<td>24</td>
<td>4410.13</td>
<td>4357.45</td>
</tr>
</tbody>
</table>

- **Results:**
 - BEKK model is clearly over-parameterized (not in table)
 - Most parsimonious models are the DCC models, Vector VECH and constant correlation.
 - Overall, based on parsimony criteria, GARCH models have a better global fit.
Validation tests

- Parsimony criteria compare models and tell which one is the most parsimonious;
 - Best fit taking into account the number of parameters;
- Selection tests tell nothing about the quality of the fit itself
 - Danger: fit can be bad for all models and one model can be just slightly better;
- 2 sets of tests:
 - Normality tests;
 - Heteroskedasticity tests;
Validation tests

- Normality tests: residuals of a well-fitted model should be approximately normal
 - Models that lack fit in the tails will most likely fail those tests;
 - Jarque-Bera and Shapiro-Wilk tests;
 - Q-Q plots;

- Heteroskedasticity tests
 - Heteroskedasticity: time-varying variance and covariance;
 - A well-fitted model in covariance should no longer show signs of heteroskedasticity in its residuals;
 - ARCH, Hosking and Engle tests;
Normality tests

- Both Jarque-Bera and Shapiro-Wilk tests show that most GARCH models fail normality tests.
- Lack of fit in the tails is shown in the following graph (constant correlation GARCH)
The following graph holds for the MRSLN(2,1) model.
Heteroskedasticity tests

- Show the results of Hosking test with 6 lags (similar with 12 lags)
- Conclusions inferred from the other 2 tests are similar.

<table>
<thead>
<tr>
<th>Model</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>MRSLN(2,1)</td>
<td>$<10^{-4}$</td>
</tr>
<tr>
<td>MRSLN(3,1)</td>
<td>0.0088</td>
</tr>
<tr>
<td>MRSLN(3,3)</td>
<td>0.0059</td>
</tr>
<tr>
<td>CCORR</td>
<td>0.7178</td>
</tr>
<tr>
<td>Vector VECH</td>
<td>0.0038</td>
</tr>
<tr>
<td>DCC-INT</td>
<td>0.2203</td>
</tr>
<tr>
<td>BEKK</td>
<td>0.0075</td>
</tr>
</tbody>
</table>

- Two parsimonious GARCH models do not fail Hosking’s test
 - This is contrary to regime-switching models
 - Both complex models (MRSLN(3,3) and BEKK) also fail the test. Complexity does not result in quality of fit.
Summary of tests

- **Selection tests:**
 - Multivariate GARCH models had a better overall fit;

- **Normality tests:**
 - Regime-switching models had a better fit in the tails;

- **Heteroskedasticity tests:**
 - Multivariate GARCH models had a better overall fit;

Since dynamics of covariance account for a larger part of the sample than the tails, GARCH models proved to be better overall.

However, model selection should depend on what matters from the model: overall vs fit in the tails.
CTE provisions over one market

- We have computed 10-year CTEs, without discounting, with a 3% annual MER.
- GARCH CTEs have been computed with 10000 replications.
- 1st table: 100% allocation in each of the 4 markets

<table>
<thead>
<tr>
<th>CTE</th>
<th>S&P TSX</th>
<th>S&P 500</th>
<th>Topix</th>
<th>FTSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MRSLN(2,1)</td>
<td>43.90%</td>
<td>32.00%</td>
<td>54.00%</td>
<td>56.20%</td>
</tr>
<tr>
<td>MRSLN(3,1)</td>
<td>47.70%</td>
<td>34.70%</td>
<td>54.50%</td>
<td>58.80%</td>
</tr>
<tr>
<td>MRSLN(3,3)</td>
<td>48.80%</td>
<td>35.90%</td>
<td>54.80%</td>
<td>60.40%</td>
</tr>
<tr>
<td>CCORR</td>
<td>32.88%</td>
<td>24.67%</td>
<td>51.51%</td>
<td>55.70%</td>
</tr>
<tr>
<td>DCC-INT</td>
<td>35.07%</td>
<td>23.55%</td>
<td>53.54%</td>
<td>53.82%</td>
</tr>
<tr>
<td>BEKK</td>
<td>29.71%</td>
<td>22.33%</td>
<td>55.91%</td>
<td>60.18%</td>
</tr>
</tbody>
</table>

- CTEs are higher with regime-switching models, especially for North American markets
CTE provisions over portfolios

- 2nd table: Different allocations in the 4 markets

<table>
<thead>
<tr>
<th>CTE</th>
<th>Ptf # 1</th>
<th>Ptf # 2</th>
<th>Ptf # 3</th>
<th>Ptf # 4</th>
<th>Ptf # 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>MRSLN(2,1)</td>
<td>35.20%</td>
<td>38.60%</td>
<td>33.00%</td>
<td>36.80%</td>
<td>33.80%</td>
</tr>
<tr>
<td>MRSLN(3,1)</td>
<td>38.70%</td>
<td>41.80%</td>
<td>34.30%</td>
<td>40.50%</td>
<td>36.80%</td>
</tr>
<tr>
<td>MRSLN(3,3)</td>
<td>37.10%</td>
<td>42.30%</td>
<td>32.10%</td>
<td>40.10%</td>
<td>35.10%</td>
</tr>
<tr>
<td>CCORR</td>
<td>24.70%</td>
<td>33.00%</td>
<td>27.28%</td>
<td>27.61%</td>
<td>25.18%</td>
</tr>
<tr>
<td>DCC-INT</td>
<td>24.97%</td>
<td>32.53%</td>
<td>25.80%</td>
<td>26.77%</td>
<td>25.97%</td>
</tr>
<tr>
<td>BEKK</td>
<td>21.84%</td>
<td>34.00%</td>
<td>26.69%</td>
<td>26.91%</td>
<td>24.94%</td>
</tr>
</tbody>
</table>

- CTEs are higher with regime-switching models, especially for portfolios with higher allocations in North American markets
Conclusion

- Given the results obtained with this specific dataset:
 - Cannot recommend a specific model for all purposes;
 - Depends on how the model will be used;
- Trade-off:
 - Fat tails (tail or local fit);
 - Heteroskedasticity in the covariances (overall or global fit);
 - None of the models presented do good in both areas;
- Recommendations depend on what matters:
 - Overall fit (explaining returns for example): multivariate GARCH;
 - Fit in the tails (CTE provisions): multivariate regime-switching;
Main reference:

- Boudreault, Mathieu and Christian-Marc Panneton (2008), "Multivariate models of equity returns for investment guarantees valuation", Accepted for publication in the North American Actuarial Journal

Important references:

Bibliography

- Other references:

Other references: