Stochastic Volatility Models: Calibrating, Pricing and Hedging

Anne MacKay, ASA
University of Waterloo

Annual Meeting
Toronto: June 21-22, 2012

Joint work with
Dr. Patrice Gaillardetz, Concordia University, Montreal
Dr. Etienne Marceau, Université Laval, Québec

Research funded by the Natural Sciences and Engineering Research Council of Canada (NSERC) and by the Fonds québécois de la recherche sur la nature et technologie (FQRNT)
Outline of the Presentation:

Financial Models
- The Black-Scholes Model
- The Heston Model
- Price of Call Options
- Hedging Derivatives

Calibrating the Models
- Calibrating Black-Scholes
- Calibrating Heston

Hedging the Financial Guarantee
- Overview of Equity-Indexed Annuities
- Hedging the Financial Guarantee
- Numerical Example
- Extension to other payoffs and products

Conclusion
General Market Assumptions

- No transaction costs or taxes.
- Infinitely divisible securities.
- Anyone can borrow or lend at a constant risk-free rate r.
- No restrictions on short selling.
- No possibility of arbitrage.
The Black-Scholes Model

- Introduced by Black and Scholes (1973).
- Stock index price dynamics given by

\[
dS_t = \mu_{BS} S_t dt + \sigma_{BS} S_t dZ_t \quad t > 0, \\
S_0 = s
\]

where μ_{BS} and σ_{BS} are constants and Z_t is a standard Brownian motion.

- $\ln \left(\frac{S_t}{S_0} \right) \sim \text{Normal} \left((\mu_{BS} - \frac{\sigma_{BS}^2}{2}) t, \sigma_{BS}^2 t \right)$
Two Measures

- Objective measure: historical prices.
- Risk-neutral measure:
 - Used to price derivatives.
 - Discounted price processes are martingales.
- Under the risk-neutral measure in Black-Scholes:

\[dS_t = r S_t dt + \sigma_{BS} S_t d\tilde{Z}_t \]
Empirical and Black-Scholes Prices
Problems with Black-Scholes

- Does not fit the empirical distribution
 - High peaks
 - Fat tails
- Volatility smile
Dynamics of index price:

\[dS_t = \mu S_t dt + \sqrt{v_t} S_t dZ_t^{(1)}, \]
\[dv_t = a(t, v_t) dt + b(t, v_t) dZ_t^{(2)}, \]

Examples: SABR, CEV, 3/2, Heston, etc.
The Heston Model

- Introduced by Heston (1993).
- Dynamics of index price (objective measure):

\[
\begin{align*}
 dS_t &= \mu S_t \, dt + \sqrt{v_t} S_t \, dZ_t^{(1)}, \\
 dv_t &= \kappa' (\theta' - v_t) \, dt + \sigma \sqrt{v_t} \, dZ_t^{(2)},
\end{align*}
\]

(2)

where \(\mu, \kappa', \theta', \sigma \) are constants and \(\langle dZ_t^{(1)} \, dZ_t^{(2)} \rangle = \rho \, dt \).
Advantages of the Heston Model

- Stochastic volatility term: easier to fit the empirical distribution of log-returns.
- CIR process:
 - Cannot reach 0 under certain conditions.
 - Mean reversion.
 - Analytic forms for the price of European options.
- Popular in the industry.
Risk-Neutral Heston Parameters

- Dynamics have the same form under both measures
- Risk-neutral parameters:
 \[\kappa = \kappa' + \lambda \]
 \[\theta = \frac{\kappa' \theta'}{\kappa' + \lambda} \]
- Market price of volatility risk: \(\lambda v_t \).
Simulated Heston Prices

Figure: Weekly log-returns simulated using the Heston model, $\kappa = 5$, $\theta = 0.0178$, $\sigma = 0.1309$, $v_0 = 0.0286$, $\rho = -0.7025$.

Stochastic Volatility Models
Financial Models
The Heston Model
Price of a European Call Option - Black-Scholes

\[C^{BS}(S_t, K, \tau) = S_t \Phi(d_1) - K e^{-r(\tau)} \Phi(d_2), \]

where \(\Phi \) is the standard normal CDF, \(K \) is the strike price, \(\tau = T - t \) and

\[
\begin{align*}
 d_1 &= \frac{\log \frac{S_t}{K} + \left(r + \frac{\sigma_{BS}^2}{2} \right)(\tau)}{\sigma_{BS} \sqrt{\tau}} \\
 d_2 &= d_1 - \sigma_{BS} \sqrt{\tau},
\end{align*}
\]
Price of a European Call Option - Heston

\[C^H(x_t, \nu_t, \tau) = K e^{-r\tau} (e^{x_t} P_1(x_t, \nu_t, \tau) - P_0(x_t, \nu_t, \tau)) \]

where \(x_t = \log\left(\frac{e^{r(T-t)} S_t}{K} \right) \), \(K \) is the strike price, \(\tau = T - t \) and

\[P_j(x_t, \nu_t, \tau) = \frac{1}{2} + \frac{1}{\pi} \int_0^\infty \text{Re} \left(\frac{\exp(iux_t + C_j(u, \tau) \theta + D_j(u, \tau) \nu_t)}{iu} \right) du, \]

for \(j = 0, 1 \).
The Greeks are sensitivities...

- Δ: to changes in the price of the index.
- Γ: of the Delta to changes in the price of the index.
- \vee: to changes in the volatility.
Dynamic Hedging Using the Greeks

- Build a replicating portfolio with the premium obtained from the sale.
- Replicating portfolio meant to keep the value of the option at all time.
- Match the Greeks of the replicating portfolio and the derivative so they vary in similar ways.
Delta Hedging

- Protects against small changes in index prices.
- Replicating portfolio invested in the index and in the money market.
- We want

\[
\frac{\partial H}{\partial S_t} = \frac{\partial V}{\partial S_t}
\]

\[
\Leftrightarrow
\]

\[
\frac{\partial}{\partial S_t} (\alpha S_t + (1 - \alpha)) = \frac{\partial V}{\partial S_t}
\]

- So proportion of the portfolio invested in the index given by \(\Delta V,t \)
- Strategy is self-financing when applied in continuous time.
Gamma Hedging

- Improves the delta hedging strategy in discrete time.
- Replicating portfolio invested in the index, the money market and a derivative (option).
- We want \(\frac{\partial H}{\partial S_t} = \frac{\partial V}{\partial S_t} \) and \(\frac{\partial^2 H}{\partial S_t^2} = \frac{\partial^2 V}{\partial S_t^2} \).
- Proportion of the portfolio invested in the option given by \(\frac{\Gamma_{V,t}}{\Gamma_{C,t}} \).
- Proportion of the portfolio invested in the index given by \(\Delta_{V,t} - \frac{\Gamma_{V,t}}{\Gamma_{C,t}} \Delta_{C,t} \).
Vega Hedging

- Protects the insurer against small changes in index prices and volatility.
- Replicating portfolio invested in the index, the money market and a derivative.
- We want \(\frac{\partial H}{\partial S_t} = \frac{\partial V}{\partial S_t} \) and \(\frac{\partial H}{\partial \nu_t} = \frac{\partial V}{\partial \nu_t} \).
- Proportion of the portfolio invested in the option given by
 \[
 \frac{\nu_{V,t}}{\nu_{C,t}}
 \]
- Proportion of the portfolio invested in the index given by
 \[
 \Delta V_{t} - \frac{\nu_{V,t}}{\nu_{C,t}} \Delta C_{t}
 \]
Hedging Errors

- Due to the discretization of the hedging process.
- Occur when rebalancing the replicating portfolio.
- Hedging error at time t defined by

$$HE_t = V_t - H_t.$$

- Total discounted hedging error given by

$$PV(HE) = \sum_{j=1}^{mT} e^{-jr} HE_j.$$
Calibration

- Assumption: market is efficient and contains all available information
- Two types of measure to calibrate:
 - Objective measure: historical returns
 - Risk-neutral measure: option prices
Calibrating the physical measure - Black-Scholes

- Use maximum likelihood estimators:

\[
\hat{\sigma}^2_{BS} = \frac{1}{n-1} \sum_{i=1}^{n} (r_i - \bar{r})^2
\]

\[
\hat{\mu}_{BS} = \bar{r} + 0.5 \hat{\sigma}^2_{BS}
\]

with \(\bar{r} = \frac{1}{n} \sum_{i=1}^{n} r_i \).

- With S&P500 weekly data from May 20, 1996 to May 16, 2011, we get \(\hat{\mu}_{BS} = 0.0637 \) and \(\hat{\sigma}_{BS} = 0.19 \).
Calibrating the risk-neutral measure - Black-Scholes

- Only parameter to calibrate is the risk-free rate.
- Can be observed on the market.
- Use longer maturities since EIAs are long-term.
- 1- to 10-year range from 0.18% to 3.15%: choose 2.00%.
- Improvement: use deterministic yield curve.
Calibrating the risk-neutral measure - Heston

- Idea: match market prices of European call options.
- Minimize the square of the difference between model and market prices.
- Can use weights based on liquidity of call.
- Obtain a function to optimize (use Matlab).
- Check that, on average, model prices are between the bid and the ask prices.
Calibrating the full Heston model

- Harder to calibrate since volatility term v_t is not directly observable.
- Calibrating both measures simultaneously requires extensive intraday quotes and historical option prices.
- Proposed methods:
 - Maximum likelihood (Aït-Sahalia and Kimmel (2007))
 - Method of moments (Garcia et al. (2011))
 - Generalized method of moments (Bollerslev et al. (2011))
Our calibration of Heston

- First calibrated risk-neutral measure.
- Parameters obtained: $\kappa = 5.1793$, $\theta = 0.0178$, $\sigma = 0.1309$, $v_0 = 0.0286$, $\rho = -0.7025$.
- Will test different volatility risk premia.
- To match historical data, need $\lambda = 2.62$.
Equity-Indexed Annuities in the Literature

- First studied under the Black-Scholes model by Brennan and Schwartz (1976) and Boyle and Schwartz (1977)
- Hardy (2003) discusses product design and pricing techniques
- Tiong (2000) and Lee (2003) present closed-form expressions for the price of the financial guarantees embedded in EIAs
- Lin and Tan (2003) price EIAs under stochastic interest rate models
- Lin et al. (2009) use a regime-switching model to value EIAs
Financial Guarantee in EIAs

- Maturity around 5 to 15 years.
- Guaranteed return on initial investment.
- Additional return based on the performance of a stock index.
- Additional return may be reduced or capped.
- Actual return of the EIA depends on its design (point-to-point, annual reset, ...).
Point-to-Point Payoff

Payoff based on the value of the index at inception and at maturity of the contract:

\[B^{PTP}(S_T, T) = \max \left(1 + \alpha \left(\frac{S_T}{S_0} - 1 \right), \varrho (1 + g)^T \right), \]

where:

- \(\alpha \): participation in index return,
- \(\varrho \) is proportion of initial investment that is guaranteed.
Pricing Point-to-Point EIAs

- Can re-write (3) as:

\[B^{PTP}(S_T, T) = K + \frac{\alpha}{S_0} \max (S_T - L, 0), \]

where \(K = \varrho (1 + g)^T \) and \(L = S_0 \left(\frac{K - 1 + \alpha}{\alpha} \right) \).

- Price at time \(t \) of EIA with maturity \(T \) is

\[P_t(S_t, \tau) = Ke^{-r\tau} + \frac{\alpha}{S_0} C(S_t, L, \tau), \]
Assessing the Performance of the Hedge

1. Start with index price S_0 at inception of the contract.
2. Simulate $S_{\delta t}$ at each time step using Heston model.
3. Given $S_{\delta t}$, calculate hedging error.
4. At the end, discount hedging error back to $t = 0$.
5. Repeat steps 1 to 4 100,000 times to obtain distribution of total hedging error.
Simulating Heston Prices

- Simple Euler discretization may simulate negative volatility.
- Need to go one order higher in Itô-Taylor expansion: Milstein discretization (see Kloeden and Platen (1992))

\[v_{t+\delta} = v_t + (\kappa'(\theta' - v_t) - \frac{1}{2}\sigma^2)\delta + \sigma \sqrt{v_t \delta} N(0, 1) + \frac{1}{2} \sigma^2 \delta (N(0, 1))^2. \]

(4)

- If \(\frac{4\kappa\theta}{\sigma^2} > 1 \), \(v_{t+\delta} \) should not become negative.
- Absorption assumption: let \(v_{t+\delta} = \max(0, v'_{t+\delta}) \), where \(v'_{t+\delta} \) is obtained using (4).
Numerical Example - Assumptions

- 10-year maturity point-to-point EIA with $g = 0$ and $\varrho = 1$.
- Participation rate α chosen so that the price of the EIA is 1.
- Risk-free rate $r = 0.02$.
- Index prices follow Heston model with different volatility risk premia λ.
Stochastic Volatility Models

Hedging the Financial Guarantee

Numerical Example

Black-Scholes Delta Hedging

Figure: Present values of hedging errors resulting from a Black-Scholes delta hedging strategy for different values of λ, $\alpha = 0.5723$
Black-Scholes Gamma Hedging

(a) $\lambda = -1$

(b) $\lambda = 0$

(c) $\lambda = 2.62$

Figure: Present values of hedging errors resulting from a Black-Scholes gamma hedging strategy for different values of λ, $\alpha = 0.5723$
Heston Delta Hedging

(a) $\lambda = -1$

(b) $\lambda = 0$

(c) $\lambda = 2.62$

Figure: Present values of hedging errors resulting from a Heston delta hedging strategy for different values of λ, $\alpha = 0.6961$
Heston Gamma Hedging

Figure: Present values of hedging errors resulting from a Heston gamma hedging strategy for different values of λ, $\alpha = 0.6961$
Heston Vega Hedging

Figure: Present values of hedging errors resulting from a Heston gamma hedging strategy for different values of λ, $\alpha = 0.6961$
More Complex Payoffs

- Other possible payoffs: annual ratchet, high water mark, etc.
- Harder to find closed-form expressions in stochastic volatility models.
- Nested Monte-Carlo simulations: possible, but computationally intensive.
- Sensitivity of payoffs to stochastic volatility.
Variable Annuities

- GMMB: Put option on the fund value.
- Fund value is typically not an index.
- Volatility of fund value still a concern.
- GMMB more valuable when fund is more volatile.
Conclusion

- Stochastic volatility models:
 - Better fit for the heavy tails and high peaks of empirical distribution of log-returns.
 - Heston model allows for closed-form expressions.
- Stochastic volatility affects performance of hedge: Black-Scholes is not enough.
- Need to pay attention to volatility changes when pricing and hedging.

Thank you for your attention. Questions?